Α E4802

					Total Pages: 2								
Re	eg No	.:						Name	e:				-
		AP Fourth							AL UNI MINATI			018	
C	ours	e Name: PRO	OBABI	LITY,			ROCI		S AND N	NUME	RICAI	METH	IODS
М	ax N	Marks: 100				(AE,	, EC)				Dur	ration: 3	Hours
111	un. I		ormal d	istribu	tion tal			in the	e examin	ation l		ution. 5	110415
			Ans	wer an	two fu		RT A ions. e	ach ca	rries 15 n	narks			Marks
1	Answer any two full questions, each carries 15 marks a) A random variable X has the following probability distribution:										(7)		
			X	-2	-1	0	1		2	3			
			f(x)	0.1	k	0.2	2k		0.3	3k			
	Find: i) The value of k ii) Evaluate $P(X < 2)$ and $P(-2 < X < 2)$												
		iii) Ev	aluate tl	he mea	n of X								
	b)) The probability that a component is acceptable is 0.93. Ten components are picked (8									(8)		
		at random. V		-	•								
		i) At least		_					_				
2	a)											(7)	
		with parameter $\lambda = \frac{1}{10}$. If someone arrives immediately ahead of you at a pub								. public			
		telephone booth, find the probability that you will have to wait:											
		i) More than 10 minutes ii) Between 10 and 20 minutes.											
	b)	For a normally distributed population, 7% of items have their values less than 35 and 89% have their values less than 63. Find the mean and standard deviation of the										(8)	
		and 89% have distribution.	e their v	values	less tha	n 63. F	ind the	e mear	i and stai	ndard d	eviatio	n of the	
3	a)		ial dict	ributio	n to th	ne follo	wing	data	and calc	nilate i	the the	oretical	(8)
J	u)) Fit a binomial distribution to the following data and calculate the theoretical frequencies.									oreticar	(0)	
		X	0	1	2	3	4	5	6	7	8		
		f	2	7	13	15	25	16	11	8	3		
	b)	The time be	etween	breakd	owns (of a pa	rticula	ır mac	chine fo	llows a	ın expo	onential	(7)
		distribution, with a mean of 17 days. Calculate the probability that a machine breaks											
		down in a 15	day pe	riod.									
			4				RT B	,		,			
4	a)	The io		-	-	_			<i>rries 15 n</i> oles X ar		oiven h	w	(7)
•	u)											(,,	
		$f(x,y) = \begin{cases} kxy & 0 < x < 4, \ 1 < y < 5 \\ 0 & otherwise \end{cases}.$											
		Find: i)			_				f X and	Y			
	1 \) Check			•	-			c	C	1 7	(0)
	b)	•									(8)		
	Theorem to find how large a sample should be taken from the distribution in ord										n oraer		

the population mean.

that the probability will be at least 0.95 that the sample mean will be within 0.5 of

- 5 a) The autocorrelation function for a stationary process X(t) is given by $R_{XX}(\tau) = (7)$ $9 + 2e^{-|\tau|}$. Find the mean value of the random variable $Y = \int_{\tau=0}^{2} X(t) dt$ and the variance of X(t).
 - b) A random process X(t) is defined by $X(t) = Y(t)\cos(\omega t + \theta)$ Where Y(t) is a (8) WSS process, ω is a constant and θ is a random variable which is uniformly distributed in $[0,2\pi]$ and is independent of Y(t). Show that X(t) is WSS.
- 6 a) Consider the random process $X(t) = A\cos(\omega t + \theta)$ where A and ω are constants (7) and θ is a uniformly distributed random variable in $(0,2\pi)$. Check whether or not the process is WSS.
 - b) The joint PDF of two continuous random variables X and Y is $f(x,y) = \begin{cases} 8xy, & 0 < y < x < 1 \\ 0, & otherwise \end{cases}$ (8)
 - i) Check whether X and Y are independent ii) Find P(X + Y < 1)

PART C

Answer any two full questions, each carries 20 marks

- 7 a) The number of particles emitted by a radioactive source is Poisson distributed. The source emits particles at a rate of 6 per minute. Each emitted particle has a probability of 0.7 of being counted. Find the probability that 11 particles are counted in 4 minutes.
 - b) Assume that a computer system is in any one of the three states: busy, idle and under repair, respectively, denoted by 0,1,2. Observing its state at 2 P. M. each day, the transition probability matrix is $P = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.1 & 0.8 & 0.1 \\ 0.6 & 0 & 0.4 \end{bmatrix}$

Find out the third step transition probability matrix and determine the limiting probabilities.

- c) If customers arrive at a counter in accordance with a Poisson process with a mean rate of 2 per minute, find the probability that the interval between two consecutive arrivals is:
 - i) More than 1 minute ii) Between 1 minute and 2 minutes
 - iii) Less than or equal to 4minutes.
- 8 a) Use Trapezoidal rule to evaluate $\int_0^1 x^3 dx$ considering five subintervals (4)
 - Using Newton's forward interpolation formula, find y at x = 8 from the following (8)0 5 10 20 25 table: x: 15 7 11 14 18 24 32
 - Using Euler's method, solve for y at x = 0.1 from $\frac{dy}{dx} = x + y + xy$, y(0) = 1 (8) taking step size h = 0.025.
- The transition probability matrix of a Markov chain $\{X_n, n \ge 0\}$ having three states (10) 1, 2 and 3 is $P = \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.1 & 0.6 & 0.3 \\ 0.4 & 0.3 & 0.3 \end{bmatrix}$ and the initial probability distribution is $p(0) = \begin{bmatrix} 0.5 & 0.3 & 0.2 \end{bmatrix}$. Find the following:
 - (0) = [0.5 0.3 0.2]. Find the following: i) $P\{X_2 = 2\}$ ii) $P\{X_3 = 3, X_2 = 2, X_1 = 1, X_0 = 3\}$.
 - b) Using Newton-Raphson method, compute the real root of $f(x) = x^3 2x 5$ (5) correct to 5 decimal places.
 - c) Using Lagrange's interpolation formula, find the values of y when x = 10 from (5) the following table:
 - x: 5 6 9 11 y: 12 13 14 16