\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
 FOURTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: MA204

Course Name: PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS (AE, EC)
Max. Marks: 100
Duration: 3 Hours

(Normal distribution table is allowed in the examination hall)
 PART A

Answer any two full questions, each carries 15 marks Marks
1 a) A random variable X has the following probability distribution:

x	-2	-1	0	1	2	3
$\mathrm{f}(\mathrm{x})$	0.1	k	0.2	2 k	0.3	3 k

Find: i) The value of $\mathrm{k} \quad$ ii) Evaluate $P(X<2)$ and $P(-2<X<2)$
iii) Evaluate the mean of X
b) The probability that a component is acceptable is 0.93 . Ten components are picked at random. What is the probability that:
i) At least nine are acceptable
ii) At most three are acceptable.

2 a) Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda=\frac{1}{10}$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait:
i) More than 10 minutes
ii) Between 10 and 20 minutes.
b) For a normally distributed population, 7% of items have their values less than 35 and 89% have their values less than 63 . Find the mean and standard deviation of the distribution.
3 a) Fit a binomial distribution to the following data and calculate the theoretical frequencies.

x	0	1	2	3	4	5	6	7	8
f	2	7	13	15	25	16	11	8	3

b) The time between breakdowns of a particular machine follows an exponential distribution, with a mean of 17 days. Calculate the probability that a machine breaks down in a 15 day period.

PART B

Answer any two full questions, each carries 15 marks
4 a) The joint PDF of two continuous random variables X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
k x y & 0<x<4,1<y<5 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Find: $\begin{array}{ll}\text { i) } k & \text { ii) The marginal distributions of } X \text { and } Y\end{array}$
iii) Check whether X and y are independent.
b) A distribution with unknown mean μ has variance equal to 1.5 . Use Central Limit Theorem to find how large a sample should be taken from the distribution in order that the probability will be at least 0.95 that the sample mean will be within 0.5 of the population mean.

5 a) The autocorrelation function for a stationary process $\mathrm{X}(\mathrm{t})$ is given by $R_{X X}(\tau)=$ $9+2 e^{-|\tau|}$. Find the mean value of the random variable $Y=\int_{\tau=0}^{2} X(t) d t$ and the variance of $\mathrm{X}(\mathrm{t})$.
b) A random process $\mathrm{X}(\mathrm{t})$ is defined by $X(t)=Y(t) \cos (\omega t+\theta)$ Where $\mathrm{Y}(\mathrm{t})$ is a WSS process, ω is a constant and $\boldsymbol{\theta}$ is a random variable which is uniformly distributed in $[0,2 \pi]$ and is independent of $\mathrm{Y}(\mathrm{t})$. Show that $\mathrm{X}(\mathrm{t})$ is WSS.
6 a) Consider the random process $X(t)=A \cos (\omega t+\theta)$ where A and ω are constants and $\boldsymbol{\theta}$ is a uniformly distributed random variable in $(0,2 \pi)$. Check whether or not the process is WSS.
b) The joint PDF of two continuous random variables X and Y is
$f(x, y)=\left\{\begin{array}{cc}8 x y, 0<y<x<1 \\ 0, & \text { otherwise }\end{array}\right.$
i) Check whether X and Y are independent ii) Find $P(X+Y<1)$

PART C

Answer any two full questions, each carries 20 marks

7 a) The number of particles emitted by a radioactive source is Poisson distributed. The source emits particles at a rate of 6 per minute. Each emitted particle has a probability of 0.7 of being counted. Find the probability that 11 particles are counted in 4 minutes.
b) Assume that a computer system is in any one of the three states: busy, idle and under repair, respectively, denoted by $0,1,2$. Observing its state at 2 P. M. each day, the transition probability matrix is $P=\left[\begin{array}{ccc}0.6 & 0.2 & 0.2 \\ 0.1 & 0.8 & 0.1 \\ 0.6 & 0 & 0.4\end{array}\right]$
Find out the third step transition probability matrix and determine the limiting probabilities.
c) If customers arrive at a counter in accordance with a Poisson process with a mean rate of 2 per minute, find the probability that the interval between two consecutive arrivals is:
i) More than 1 minute
ii) Between 1 minute and 2 minutes
iii) Less than or equal to 4 minutes.

8 a) Use Trapezoidal rule to evaluate $\int_{0}^{1} x^{3} d x$ considering five subintervals
b) Using Newton's forward interpolation formula, find y at $x=8$ from the following
table: $\begin{array}{llllllll}\mathrm{x}: & 0 & 5 & 10 & 15 & 20 & 25\end{array}$

$$
\begin{array}{lllllll}
\mathrm{y}: & 7 & 11 & 14 & 18 & 24 & 32
\end{array}
$$

c) Using Euler's method, solve for y at $x=0.1$ from $\frac{d y}{d x}=x+y+x y, \quad y(0)=1$ taking step size $h=0.025$.
9 a) The transition probability matrix of a Markov chain $\left\{X_{n}, n \geq 0\right\}$ having three states 1,2 and 3 is $P=\left[\begin{array}{lll}0.2 & 0.3 & 0.5 \\ 0.1 & 0.6 & 0.3 \\ 0.4 & 0.3 & 0.3\end{array}\right]$ and the initial probability distribution is $p(0)=\left[\begin{array}{lll}0.5 & 0.3 & 0.2\end{array}\right]$. Find the following:
i) $P\left\{\mathrm{X}_{2}=2\right\}$
ii) $P\left\{X_{3}=3, X_{2}=2, X_{1}=1, X_{0}=3\right\}$.
b) Using Newton-Raphson method, compute the real root of $f(x)=x^{3}-2 x-5$ correct to 5 decimal places.
c) Using Lagrange's interpolation formula, find the values of y when $x=10$ from the following table :

$\mathrm{x}:$	5	6	9	11
$\mathrm{y}:$	12	13	14	16

